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A central goal of neuroscience is to understand how populations of neurons build and manipulate representations of percepts that
provide useful information about the environment. This symposium explores the fundamental properties of these representations and
the perceptual spaces in which they are organized. Spanning the domains of color, visual texture, environmental sound, music, tactile
quality, and odor, we show how the geometric structures of perceptual spaces can be determined experimentally and how these structures
provide insights into the principles of neural coding and the neural mechanisms that generate the codes, and into the neural processing
of complex sensory stimuli. The diversity of the neural architecture in these different sensory systems provides an opportunity to
compare their different solutions to common problems: the need for dimensionality reduction, strategies for topographic or nontopo-
graphic mapping, the utility of the higher-order statistical structure inherent in natural sensory stimuli, and the constraints of neural
hardware.

Introduction
The energy absorbed by sensory receptors provides organisms
with clues about the structure of the world, but the properties of
the world that are important to an organism are rarely explicit in
the sensory input. One of the main aspirations of neuroscience is
to understand how populations of neurons build and manipulate
representations that make explicit useful properties of the world.
This symposium aims at generating interest into the fundamental
properties of these representations, known as perceptual spaces,
across multiple sensory modalities.

A perceptual space consists of a set of stimuli in some sensory
domain along with a set of similarity relationships. The charac-
teristics of a perceptual space center on two fundamental prop-
erties: dimensionality and intrinsic geometry. Dimensionality
and intrinsic geometry are, in turn, consequences of the space’s
metric (i.e., the operation that defines similarity). Behaviorally,
similarities can be estimated by matches (including generaliza-
tion), just-discriminable differences, proximity to exemplars,
and mid-point settings. Physiologically, similarities can be quan-
tified by activation patterns of receptors or other neurons, in rates

or temporal patterns of impulse responses, and in different levels
of correlated firing.

Based on the experimentally determined properties of the
similarity measure, the perceptual space can be given a well-
defined geometry, thus providing access to a large number of
theorems that in turn specify implications of the representational
structure. These geometries form a natural hierarchy, with more
highly structured geometries placing greater demands on the
conditions that the metric must satisfy (Klein, 1939; Brannan et
al., 1999). At the top of the hierarchy is familiar Euclidean geom-
etry and its non-Euclidean relatives, which allow representing
stimuli as vectors, with well-defined sizes and angles. Affine ge-
ometry is one step down the hierarchy: it allows for vector repre-
sentations on arbitrarily scaled axes and has a notion of lines and
parallelism, but no notion of angle or size. A further step down is
projective geometry: collinearity and dimension remains de-
fined, but not parallelism. At the bottom of the hierarchy (with
the fewest geometric requirements) is the notion of a topological
space: proximity is defined, but collinearity and dimension need
not be. Superimposed on this characterization of the intrinsic
geometry of the perceptual space is its extrinsic geometry, which
is the mapping of the perceptual space on a physical space of
stimuli; characterizing this can provide additional information
about neural transformations. Higher-dimensional representa-
tions enable added flexibility in learning and finer-grained qual-
itative distinctions but can impose a higher cost on similarity
computations.

Maxwell’s studies (Maxwell, 1860) provide a paradigmatic ex-
ample of the analysis of a perceptual space. By showing that color
matches satisfied the linearity properties of additivity and scalar
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multiplication, Maxwell was able to embed color matches into
the structure of the linear algebra recently invented by Grassman,
thus allowing for vector operations to predict the results of com-
bining lights of different colors. Moreover, although the physical
combinations of visible lights that range from 400 to 700 nm
form a space of arbitrarily high dimensionality (depending on the
discrete grain of dividing the spectrum), Maxwell showed that the
space of color matches was only 3D: the key observation was that
for color-normal observers, any light could be matched by a suit-
able combination of any three fixed primary lights. To probe the
physiological basis of perceptual color space, Maxwell went on to
show that the matches of color-normal observers were a reduced
subset of the matches of congenital color defectives. He then used
the additional color confusions of individuals with congenital
color vision deficits to derive the spectral sensitivities of the three
types of cones. A century later, these predictions were confirmed:
electrophysiological measurements of the spectral sensitivities of
human cones (Schnapf et al., 1987) were shown to match psycho-
physical estimates derived using Maxwell’s methods (Smith and
Pokorny, 1975). Variants of Maxwell’s space, for example, CIE
1931 or MacLeod and Boynton (1979) have proven invaluable for
perceptual and physiological investigations of the visual system,
and Maxwell’s notion of metamers (physically distinct stimuli
that appear identical) has proven to be an important concept in
other sensory domains (Freeman and Simoncelli, 2011).

Modern computational and experimental developments in
manipulating complex stimuli enable the construction of percep-
tual spaces that can provide insights into the shaping of periph-
eral and central neural tuning by the characteristics of natural
stimuli, the roles of temporal and spatial factors in neural coding,
the neural basis of salience and perceptual scale invariance, and
learning processes that embody abstraction, categorization, and
generalization. To exemplify these insights, the presentations in
this symposium discuss the neural representations of colors, nat-
ural images, environmental sounds, tactile materials, and natural
odors. Despite the diversity of the neural architecture in these
domains, the problems confronted by sensory systems have
much in common: the need for dimensionality reduction, the
choice between topographic and nontopographic mapping, the
opportunity to use the statistical structure inherent in natural
sensory stimuli, and the constraints of neural hardware. These
examples provide an opportunity to compare and contrast per-
ceptual spaces and their underlying neural processes across these
modalities.

Geometric structure of perceptual color space
Historically, color vision has seen the most systematic develop-
ment of perceptual spaces for research and applied purposes, so it
is an appropriate starting point for this symposium. Although
most investigations of color processing focus on color matching
and discrimination, the use of color to make inferences about the
environment, and guide action, requires more sophisticated pro-
cessing, such as the use of relative color similarities to identify
materials across spectrally distinct illuminations (Zaidi, 1998;
Zaidi and Bostic, 2008). Multidimensional scaling (Shepard,
1962) has been used to specify color spaces based on numerical
ratings of similarity between colors, but the procedure requires
Euclidean assumptions, and Wuerger et al. (1995) used proxim-
ity judgments between points and lines to show that this assump-
tion fails for color similarity. Thus, the intrinsic geometry of color
space is as yet unclear: it must be structured enough to support
judgments of relative similarity, but proximity judgments indi-
cate that it is not Euclidean.

Given these results, Ennis and Zaidi (2013) directly investi-
gated the intrinsic geometric structure supporting a color simi-
larity space. Varignon’s Theorem (Coxeter and Greitzer, 1967)
states that, for any quadrilateral, when the midpoints of opposite
sides are joined by straight lines, the point of intersection is si-
multaneously the midpoint of both lines. This theorem holds
only for vector spaces that are at least affine, so they tested its
validity for perceived midpoints of quadrilaterals covering vastly
different colors. Observers viewed a test patch flanked by two
patches, each containing one vertex color of a quadrilateral’s
edge. They were instructed to consider the color change be-
tween the endpoints along the “reddish-greenish” and “bluish-
yellowish” opponent-dimensions and to adjust the middle
patch’s hue and saturation to a color perceived as the midpoint
on both dimensions (i.e., equally similar to both endpoints). Af-
ter finding the midpoints for the four sides, observers set the
midpoints between the two pairs of facing midpoints. For seven
observers, the two final midpoints for each quadrilateral coin-
cided, thus satisfying the conditions for an affine space. There-
fore, when observers explicitly use an opponent-color mental
representation, a perceptual color space based on relative simi-
larities across large color differences has an affine structure. In a
Euclidean color space, the distance between chromaticities would
represent magnitude of similarity, but even in a weaker affine
space, ratios of distances along a line would provide measures of
relative similarity, and parallelism would provide similarity be-
tween color changes.

The usefulness of similarity judgments is not confined to
judging materials across illuminations; they are also used in every
sensory modality for a number of tasks. Indeed, similarity is one
of the fundamental principles used by Gestalt psychology to ex-
plain perceptual organization phenomena (Wertheimer, 1912)
and is essential to generate models of generalization (Tversky,
1977; Shepard, 1987). The neural basis of similarity computa-
tions is essentially unknown, partly because of the paucity of
behavioral tasks that could be used with a model animal and the
lack of empirical justification of the geometrical properties. The
color results show a path toward ameliorating the situation. A
midpoint between two stimuli is the stimulus that is simultane-
ously most similar to the two and could be ascertained by having
an animal do forced choices of similarity to first find the locus of
stimuli that are equally similar to two fixed stimuli and then from
this set the stimulus that is most similar to both. If the perceptual
space of the animal could be shown to be Euclidean or affine, it
puts strong constraints on the neural circuits for computing sim-
ilarity: Euclidean distances imply a comparison based on the
power (sum of squares) of the difference; affine geometry implies
comparisons based on ratios.

Perceptual space of the elements of spatial vision
By investigating the perceptual space of elements of spatial vision,
Victor and Conte (2012) explored how the characteristics of early
visual processing are shaped by a combination of the character-
istics of natural sensory stimuli and the constraints of neural
hardware.

Random images containing the elements of spatial vision
(light vs dark, lines, edges, corners, etc.) can be considered to
constitute a perceptual space, but the coordinates and geometry
of this space are unclear, as these elements are interdependent.
For example, edges typically occur when luminance differences
are present, and corners typically occur only when lines or edges
are present. To navigate in this space, Victor’s laboratory first
constructed a large set of artificial images that allowed for the
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independent manipulation of these elements, up to the con-
straints of their mathematical dependencies. The resulting stim-
ulus space was 10-dimensional: rich enough to capture the
geometric interdependence of local image features but still trac-
table (Victor and Conte, 2012).

Working within this space, Victor and Conte (2012) deter-
mined its perceptual structure (i.e., the extent to which images
defined by different complements of local features were visually
distinct). They found that the perceptual structure could be de-
scribed by an “isodiscrimination surface,” the set of points in the
space that were equally distinguishable from the random image.
The isodiscrimination surface had an ellipsoidal shape, indicat-
ing that the local geometry of the perceptual space was Euclidean.
The axes of the ellipsoid, which represented the features that were
most visually salient, next-most-salient, etc., did not correspond
to the “pure” features, such as luminance or edges at single ori-
entation; rather, each perceptual axis was a combination of sev-
eral of these elements. The analysis also showed that some
combinations of features were highly salient whereas others were
virtually imperceptible.

In collaboration, Briguglio et al. (2013) determined the distri-
bution of these same local elements in natural images. Interest-
ingly, this showed that the pattern of covariation of these local
elements in natural images was a close match to the pattern of
visual sensitivity. In other words, the axes in the perceptual space
of greatest sensitivity corresponded to the combinations of local
image statistics that were maximally informative, indicating a
kind of detailed matching of early visual processing with the char-
acteristics of natural visual stimuli.

Insight into the perceptual space of sound from the analysis
and synthesis of real-world audio
The auditory system receives as input the pattern of displacement
of the two eardrums, which vibrate back and forth in response to
sound. From that pattern of displacement, an organism must
determine what happened in the world: whether it is listening to
an attractive conspecific, an upset baby, or a rainstorm. In most
cases of interest, it is computationally intractable to determine
the nature of a sound source directly from the sound waveform.
Instead, sensory input must be transformed through layers of
neural circuitry into representations in which the properties of
interest are more readily discernible. Such representations form
the basis of perceptual spaces; they highlight behaviorally impor-
tant dimensions of variation, such as those that distinguish dif-
ferent classes of stimuli, and collapse across sources of variation
that are irrelevant for behavior.

To test theories of such perceptual representations, one ap-
proach is to test whether a candidate representation can support
discrimination between classes of stimuli (Pinto et al., 2009). An
alternative approach is to evaluate a model representation by
synthesizing stimuli that generate particular values in the repre-
sentation. If the representation discards (and retains) the same
information that the perceptual system does, synthetic examples
that produce the same representation as some real-world stimu-
lus, such as a musical instrument sound, ought to be perceived as
another realistic example of the same thing (Risset and Wessel,
1999; Gaver, 1993; Portilla and Simoncelli, 2000).

McDermott and colleagues (McDermott et al., 2009; McDer-
mott and Simoncelli, 2011) recently adopted this approach to the
study of sound textures: sounds produced by the superposition of
many similar acoustic events, as a result from falling rain, swarms
of insects, or galloping horses. Different textures vary in their
statistical properties, suggesting that textures could be repre-

sented with statistics computed from the peripheral auditory
system. McDermott and colleagues (McDermott et al., 2009; Mc-
Dermott and Simoncelli, 2011) examined statistics, such as the
mean and variance of the responses of simulated auditory filters,
as well as correlations of various sorts between different filter
responses. Because such statistics are averages of information
over time, they are potentially suited to characterizing stationary
properties of a sound signal (e.g., the intensity of a rainstorm, or
the number of people clapping in an audience). Consistent with
this notion, random signals constrained only to have the same
values of particular statistics as a real-world texture often
sounded like realistic examples of the texture (McDermott et al.,
2009; McDermott and Simoncelli, 2011). This result gives cre-
dence to the hypothesis that textures are represented with rela-
tively simple statistics computed from the responses of the
peripheral auditory system.

Notably, different examples of the same texture (each with a
distinct arrangement of details) have the same statistics, such that
a representation consisting of the statistics provides a form of
invariance. This observation raises an interesting possibility: if
the perceptual space of texture is defined solely by these statistics,
listeners might have difficulty distinguishing different examples
of the same texture. This is indeed the case for moderately long
excerpts (more than a few seconds in length): different examples
of the same texture are difficult to discriminate, even though
excerpts of different textures (with different statistics) are readily
distinguished (McDermott et al., 2013). Textures thus appear to
be represented in a space of sound statistics. The acoustic events
composing the texture (e.g., crackles, claps) are incorporated into
statistical measurements but are not themselves readily accessible
to the listener.

Population code for invariant representation of natural
sounds in the mammalian auditory system
Discriminating and detecting complex sounds are complicated in
the real-world environment by acoustic distortions of the com-
munication signals when produced by different sources and in
the presence of background noise. The sound representation at
the early auditory processing stages reflects the acoustics of the
signal and is therefore expected to change dramatically with
acoustic distortions or background noise (Pfafflin and Mathews,
1966; Bregman, 1990; Isabelle and Colburn, 1991). To compre-
hend a word spoken by different speakers or in different noise
environments, the auditory system must develop invariant rep-
resentation of complex sound objects, by converting the repre-
sentation of the physical features of the sound waveform to an
object-based representation. According to the hierarchical pro-
cessing model, in higher brain areas, representation of complex
sounds, such as vocalizations, is expected to change less with the
vocalizations’ acoustic distortions or background noise than in
earlier auditory areas, as neuronal population exhibits increased
invariance (Bregman, 1990; Russ et al., 2007; Nelken and Bar-
Yosef, 2008).

Mixed evidence exists on whether the primary auditory cortex
(A1), a key auditory processing area in mammals, exhibits invari-
ance to basic temporal and spectral transformations of con-specific
vocalizations. Previously, Geffen and colleagues found that
individual neurons in A1 exhibit preferential representation of
the original, over distorted, vocalizations. Next, Geffen and col-
leagues tested whether populations of neurons in A1, recorded in
awake rats, exhibit invariance to transformations in the basic
acoustic features of con-specific vocalizations. To (Carruthers et
al., 2013) evaluate how the population code of primary auditory
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cortex facilitates invariant representations of similar stimuli, si-
multaneous neuronal activity from ensembles of neurons in A1
was recorded in response to a set of vocalizations, presented both
as original recordings and after amplitude-and frequency-
modulation rates had been increased or decreased. Classification
accuracy of support vector machines, which were fit and tested on
each stimulus condition, was significantly higher when tested on
the same stimulus condition on which it was trained. However,
the performance of the classifier, when trained to and tested on
different conditions, was significantly above chance. Thus, al-
though not demonstrating invariant representation directly, the
population code in A1 contains enough information for a circuit
just one synapse up to construct an invariant representation of
temporally and spectrally distorted signals. Furthermore,
population-level analysis of the mechanisms used to extract the
representation of transformed and original vocalizations demon-
strates that noise correlations between neuronal responses play a
crucial role. Noise correlations between neurons improved the
accuracy of classification of vocalizations. Downstream neuro-
nal circuits likely use information encoded in synchronous
activity between A1 neurons.

Combined, these results demonstrate that invariant represen-
tation of complex sounds in the mammalian auditory system
begins at the level of populations of neurons in the primary au-
ditory cortex. Therefore, the representation of the acoustic per-
ceptual space in the brain can only be understood at the level of
population codes.

Spatial and temporal mechanisms for tangible textures across
spatial scales
The somatosensory system supports a rich perceptual space of
surface textures, comprising at least four major dimensions:
roughness/smoothness, hardness/softness, stickiness/slipperi-
ness, and warm/cool (Hollins et al., 2000). Although surface tex-
ture itself is intrinsically spatial, the neural mechanisms
underlying the perception of surface texture rely on a combina-
tion of spatial and temporal codes. Coarse surface features (on
the order of millimeters) are reflected in the spatial pattern of
activation evoked in a population of mechanoreceptive afferents
that innervate the fingertip skin (Connor and Johnson, 1992) in a
relatively dense manner (�100 units/cm 2). However, much of
the “feel” of a surface is driven by features on the order of 1 �m,
a much finer scale. To sense these features, we run our fingers
across the surface, which leads to the elicitation of small and
complex skin vibrations (Hollins et al., 2002; Bensmaia and Hol-
lins, 2003). Two populations of cutaneous mechanoreceptive af-
ferents are exquisitely sensitive to such skin vibrations and
produce highly temporally patterned and repeatable responses to
textures (Mackevicius et al., 2012; Weber et al., 2013). The spike
patterns are texture-specific and contain enough information to
mediate our ability to distinguish textures. Furthermore, they
contract or dilate systematically in time with increases or de-
creases in scanning speed. Thus, whereas coarse surface features
are encoded in a spatial pattern of afferent activation, the fine
spatial structure of a surface is converted into a temporal spiking
pattern.

Spatial and temporal mechanisms are further elaborated at the
cortical level. One population of neurons in somatosensory cor-
tex is sensitive to the coarse spatial structure of skin deforma-
tions, on the order of millimeters. These neurons have receptive
fields that contain excitatory and inhibitory subfields, analogous
to those observed in primary visual cortex (DiCarlo et al., 1998).
They are thought to perform spatial computations on the afferent

input, for example, explicitly encoding stimulus edges (Bensmaia
et al., 2008), and likely contribute to the processing of coarse
textural features. A separate population of somatosensory corti-
cal neurons uses a time-varying firing rate to encode the envelope
(time-varying amplitude) of skin vibrations; within this enve-
lope, the fine structure of their firing patterns encodes the fre-
quency composition of the vibrations (Harvey et al., 2013). The
spectral composition of these spiking patterns shapes the way the
vibrations (and by extension textures) are perceived. Judgments
of roughness, the dominant dimension of texture, are well pre-
dicted based on a combination of spatial and temporal codes
(Weber et al., 2013), suggesting that temporal representations of
fine spatial features are combined with spatial representations of
coarse features to culminate in a holistic percept of surface
textures.

High-dimensional computational architecture of
odor representations
In olfaction, the dimensionality and geometry of similarity for
representational processing are unusually configured, and this
has important implications for the architecture of the olfactory
system. In olfaction, dimensionality is unavoidably high and the
geometry lacks a simple, externally defined basis analogous to
wavelength or pitch. This substantially constrains effective neural
algorithms and processing compared with early vision and audi-
tion. For example, the high dimensionality of the input space
renders low-dimensional contrast enhancement algorithms,
such as nearest-neighbor lateral inhibition, ineffective for olfac-
tion, whereas the dependence of receptive field similarities on the
statistical distribution of odorous inputs limits the efficacy of any
scheme dependent on durable intercolumnar interactions. These
problems have been resolved theoretically by a nontopographical
algorithm based upon intracolumnar feedforward inhibition and
global normalization within the glomerular layer (Cleland and
Sethupathy, 2006; Cleland et al., 2007; Cleland, 2010; Li and
Cleland, 2013) that is receiving increased experimental support
for its predictions (Soucy et al., 2009, Gire and Schoppa, 2009;
Marbach and Albeanu, 2011; D’Souza and Vijayaraghavan, 2012).

This, however, is only the first step. Sensory systems do not
sample their input spaces uniformly; rather, they devote dispro-
portionate resources to ecologically important regions of the per-
ceptual space. For example, the cochlear nucleus in humans
exhibits a substantial expansion in the regions devoted to speech
frequencies. The Penfield somatosensory homunculus depicts
the deeply nonuniform distribution of somatosensory receptors
across the skin, heavily favoring the hands and face. Terrestrial
visual systems appear to be optimized for the 1/f scene statistics of
spatial frequency exhibited by the natural world. The olfactory
system is likely to exhibit such adaptive nonuniformities as well;
however, the statistics of important environmental odors appear
to be less predictable, compared with the size of the space, than
the statistics of other modalities. Cleland and colleagues (Cle-
land, 2010; Cleland and Sethupathy, 2006; Cleland et al., 2007)
have hypothesized that this function is achieved in olfaction by
learning. Specifically, they propose that learning processes within
olfactory bulb, probably in correspondence with piriform corti-
cal feedback, serve to transform this vast high-dimensional space
into probabilistic categorical representations based upon indi-
vidual olfactory experience. These learned nonuniformities will
profoundly bias the internal representational space in accordance
with the evolving needs of the organism. The mechanisms pro-
posed to underlie this adaptive transformation generate higher-
order receptive fields in bulbar interneurons and cortical
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principal neurons that enable near-arbitrary levels of separation
among the representations of learned odors. Interestingly, these
proposed mechanisms depend on the coordinated timing of ac-
tion potentials rather than on differences in aggregate spike rates.

The geometry of odor similarity is quantifiable both in terms
of perceptual similarity (behavior) and in terms of neuronal ac-
tivation patterns: from primary olfactory receptors to higher-
order principal neurons. Briefly, a given species expresses a
species-specific complement of odorant receptors (ORs). ORs
respond strongly to preferred odors, but also to “neighboring”
odors, including several structural and side-chain variants
(Araneda et al., 2000). These arbitrary but consistent receptive
fields of ORs form the physical foundation of olfactory percep-
tual space. Unlike retinal cones or auditory hair cells, however,
they lack any external basis for quantitative similarity other than
the probability of coactivation. The most important consequence
of this fact is that the similarity between the receptive fields of two
ORs is not fixed but depends upon the statistical structure of the
odor environment. (For example, two ORs may have essentially
identical receptive fields, and be functionally 100% redundant,
until the day comes when a new odor is encountered that acti-
vates one OR and not the other). This also is the reason why the
receptive fields of different ORs must be considered independent
in this context, such that the full dimensionality of odor space
equals at least the number of different OR types. In any given,
finite universe of odorants, the dimensionality of odor space can
be reduced, often substantially; however, this lowered dimen-
sionality reflects primarily the relative poverty of the input space.
If the olfactory system is to be able to interpret any possible com-
bination of receptor inputs received, then a high-dimensional
input space is unavoidable, and the neural circuitry of the system
must accommodate this fact.

Discussion
This paper is not meant to be a comprehensive review of work on
perceptual spaces, so it does not attempt to cover perceptual
spaces that have been proposed for many other attributes, such as
gloss (Ferwerda et al., 2001; Wills et al., 2009), timbre (Lakatos,
2000; Terasawa et al., 2005), vowels (Pols et al., 1969), gestures
(Arfib et al., 2002), and biological motion (Giese and Lappe,
2002), mostly on the basis of multidimensional scaling analyses.
Instead, it highlights six quite diverse approaches to some com-
mon central themes. One central theme concerns the perceived
similarity among stimuli. At an abstract level, similarity can be
used to generate models of generalization ranging from set-
theoretic (Tversky, 1977) to continuous metric-space structures
(Shepard, 1987), notably within a Bayesian formulation (Tenen-
baum and Griffiths, 2001). Research on color mid-point settings
and odor generalization provides examples of using relative sim-
ilarity judgments to investigate the geometry of perceptual
spaces. Such investigations are logical preliminaries to using mul-
tidimensional scaling to define a perceptual space, as they test the
validity of the assumptions inherent in the statistical procedure.
A second central theme is the efficient representation of environ-
mentally important properties of natural stimuli. Two interesting
aspects of such representations are exhibited across multiple sen-
sory modalities. First, invariant representations may be con-
tained within the statistics of distributions of stimuli. One
approach to identify these invariances applies statistics of differ-
ent orders to white noise to synthesize stimuli that may be
metamers with real stimuli; another looks for the distribution of
specific local features within stimuli. Second, across several mo-
dalities, audition, somatosensation, olfaction, and gustation (Di

Lorenzo et al., 2009), the representation of fine-grained proper-
ties exploits temporal spiking patterns and not just rates of firing.
Indeed, correlated spiking patterns provide a robust substrate for
invariant representations of complex stimuli. These analyses to-
gether help to demonstrate how the structure of model percep-
tual spaces represents a trade-off between the goals of providing
an efficient representation of sensory stimuli and the constraints
of neural hardware.

References
Araneda RC, Kini AD, Firestein S (2000) The molecular receptive range of

an odorant receptor. Nat Neurosci 3:1248 –1255. CrossRef Medline
Arfib D, Couturier JM, Kessous L, Verfaille V (2002) Strategies of mapping

between gesture data and synthesis model parameters using perceptual
spaces. Org Sound 7: 2:127–144.

Bensmaia SJ, Hollins M (2003) The vibrations of texture. Somatosens Mot
Res 20:33– 43. CrossRef Medline

Bensmaia SJ, Denchev PV, Dammann JF 3rd, Craig JC, Hsiao SS (2008) The
representation of stimulus orientation in the early stages of somatosen-
sory processing. J Neurosci 28:776 –786. CrossRef Medline

Brannan DA, Esplen MF, Gray JJ (1999) Geometry. Cambridge, MA: Cam-
bridge UP.

Bregman AS (1990) Auditory scene analysis: the perceptual organization of
sound. Cambridge, MA: MIT.

Briguglio J, Hermundstad A, Conte MM, Victor JD, Tkačik G, Balasubrama-
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